11 research outputs found

    String theory and the Kauffman polynomial

    Full text link
    We propose a new, precise integrality conjecture for the colored Kauffman polynomial of knots and links inspired by large N dualities and the structure of topological string theory on orientifolds. According to this conjecture, the natural knot invariant in an unoriented theory involves both the colored Kauffman polynomial and the colored HOMFLY polynomial for composite representations, i.e. it involves the full HOMFLY skein of the annulus. The conjecture sheds new light on the relationship between the Kauffman and the HOMFLY polynomials, and it implies for example Rudolph's theorem. We provide various non-trivial tests of the conjecture and we sketch the string theory arguments that lead to it.Comment: 36 pages, many figures; references and examples added, typos corrected, final version to appear in CM

    Homology of Distributive Lattices

    Full text link
    We outline the theory of sets with distributive operations: multishelves and multispindles, with examples provided by semi-lattices, lattices and skew lattices. For every such a structure we define multi-term distributive homology and show some of its properties. The main result is a complete formula for the homology of a finite distributive lattice. We also indicate the answer for unital spindles and conjecture the general formula for semi-lattices and some skew lattices. Then we propose a generalization of a lattice as a set with a number of idempotent operations satisfying the absorption law.Comment: 30 pages, 3 tables, 3 figure

    Polynomial diffeomorphisms of C^2, IV: The measure of maximal entropy and laminar currents

    Full text link
    This paper concerns the dynamics of polynomial automorphisms of C2{\bf C}^2. One can associate to such an automorphism two currents μ±\mu^\pm and the equilibrium measure μ=μ+μ\mu=\mu^+\wedge\mu^-. In this paper we study some geometric and dynamical properties of these objects. First, we characterize μ\mu as the unique measure of maximal entropy. Then we show that the measure μ\mu has a local product structure and that the currents μ±\mu^\pm have a laminar structure. This allows us to deduce information about periodic points and heteroclinic intersections. For example, we prove that the support of μ\mu coincides with the closure of the set of saddle points. The methods used combine the pluripotential theory with the theory of non-uniformly hyperbolic dynamical systems
    corecore